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Note

Analytical and Numerical Aspects of Certain
Nonlinear Evolution Equations
IV. Numerical, Modified Korteweg-de Vries Equation

1. INTRODUCTION

The modified Korteweg—de Vries (MKdV) equation describes a wide class of
physical phenomena (e.g., acoustic waves in certain anharmonic lattices [1] and
Alfén waves in a collisionless plasma [2]).

In 1984 we derived nonlinear partial difference equations which have as limiting
forms the Korteweg—de Vries (KdV) and the MKdV equations {3]. These dif-
ference equations have a number of special properties [4] and are constructed by
methods related to the inverse scattering transform (IST). We have also implemen-
ted similar schemes for the nonlinear Schrédinger (NLS) (Ablowitz-Ladik) and the
KdV equations and compared them with known numerical schemes [5, 6].
Experiments have shown that the IST schemes for the NLS and KdV equations
compare very favorably with the other known numerical methods. This work aims
to implement and compare the proposed schemes which were developed in {3]
with certain other known numerical methods for the MKdV equation

u,+6uu, +u, . =0 (L.1)

The MKdV, KdV, and NLS equations are essentially classical in the literature in
nonlinear phenomena.

The following numerical methods are applied to the MKdV equation: (i) a
proposed global scheme, (ii) a proposed local scheme, (iii) an implicit scheme,
(iv) a split step Fourier method (Tappert), and (v) a pseudospectral method
(Fornberg and Whitham).

Our approach for comparison is: (a) fix the accuracy (L) for computations
beginning at =0 and ending at ¢t =T; (b) leave other parameters free (e.g., 4¢, or
Ax), and compare the computing time required to attain such accuracy for various
choices of the parameters.

To obtain the optimal computing time for each scheme, the following procedure
was used: Let T,,(4X)=the computing time involved when the problem was
solved by method M using a spatial step of 4x, with A7 chosen to be the largest At
which makes the L_ <Tol (if no such 4 exists then T(4x)= o) and choose
Ty =min,, [Ty(4x)] as the optimal computing time for method M.
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The above methods are applied to the MKdV equation (1.1) subject to the
conditions:

(a) The initial conditions. (i) 1-soliton solution. The exact solution of (1.1)
on the infinite interval is

u(x, t) =k sech(kx — k*t + n,), (1.2)

where n, = constant.
For initial conditions, Eq. (1.2) is used at =0, and different values of k are
tested and #, is chosen to be zero.

(ii) Collisions of two solitons. The exact solution of (1.1) on the infinite
interval is

u(x, 1) =i(log(f */))., (1.3)
where * denotes a complex conjugate,

f=1+ie"+ie™— emrmt A

ni=k;x—k}t+n,

el = ki—k; 2_
ki+k;
For initial conditions, Eq. (1.3) is used at r=0, and three different sets of values
of the parameters are studied, namely,

and

k,=0.5, k=10, 7®=11, ¥ =3.33;
k,=0.5, k=20, n©=0625 — n®=875;
ki=—05  k,=10, n®=-11, 7=10.

The solitons are allowed to interact and return to their original shapes.

(b) The boundary conditions. Periodic boundary conditions on the interval
[ —20, 20] are imposed. The numerical solution is compared to the exact solution.
In addition two of the conserved quantities are computed; namely; | u*dx, and
[~ ()] dx.

Recently strong numerical schemes have been proposed for solving nonlinear
evolution equations, including a scheme using finite element techniques introduced
by Bona, Dougalis, and Karakashian [12], and an adaptive numerical scheme
introduced by Sanz-Serna [13]. In the future it would be useful to compare our
schemes to these newer ones as well as consider initial conditions more general than
those yielding interacting solitary waves.
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2. REPRESENTATION OF THE MKDV EQuUATION USING NUMERICAL METHODS

(i) The proposed global scheme which is based on the IST is (Taha and
Ablowitz, [3])

ARy =Ry ,AY~R 'y, DY+ RY S, ., —RrIP,

n+1 n+1

—[anjzlA(j)_R:Lzyn-zD(f)"'anfllsn—z_R:L1Pn—1]

n n—1
+R,,"‘<D(°’— y T,)—R;,"+1<A<°>— ¥ T,), 2.1)
/= —o0

I= —o0
where
A" Ry =Ry —RY,
T/=RI*Y{RPH'AD— R ,y,_, DO+ RIH'S, ,— R P}
—R?"{R;"+2A(j') —R;"++21y,+]D(f’+ R5"+ 1S1+ [ R;"++1]P1}:

S,=AP+ A9F,+DY % H,

j=—w

Pn=<D(2)+ Z [A(j)Ej+D(4)Gj]’7j)yna
Jj=—
[T (e7+Yer),  or=1+Ry,

i= —oo

Ma=7, /0%, Hy= —{RYRV G+ —RY  (RU*16TLB, o,

n+1

Vn

Bo= 10T 1, Fn=[Rr:1'Rr+l- 5 A'"(R;"R;"H)],

j= -

G, =Ry 'Ry —RIRY )y, 407+,

E,=(RPRy* 67+ — Ry R7*1 6T,
AP = 240 4 1g D?= 240 _1lq4,
AD =140 _1g DWW =140 4 1q

a=i—, A'® = arbitrary constant,
(4x)*
R=A4xu, |n] < p (half the length of the interval of interest), m>0.

This scheme is implemented with the value of 4 =3a. This proposed scheme is
unconditionally stable, and has a truncation error of order O((4t)*)+ O((4x)?).
This scheme is implemented using the sweeping/iteration technique presented by the
authors [5, 6].
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(ii) The proposed local scheme which is derived from Eq. (2.1) with 4® = 3a
is
up ! —u, u, up = 3uy ! +3“::"++11 upty up = 3wy +3uy —uy

At 2(dx)° + 2(4x)?

1
e ) = )

m+1

Un iy m,.m m+1 m+l m
+ 2 [unun+l+un n+1+2un71u ]

u,;
- +1 +1 m+1 m+l
(77 S T T o2 VA TN,

2

m

U
n m+ 1 m+1
+_(un n+l+u un+l)

2

um+l
__n (um+llum+l+u u™

2 — n—1%n
AL — Y ,J]. (22)

This scheme is unconditionally stable according to linear analysis, and has a
truncation error of order O((4t)?)+ O((4x)?). This scheme is implemented using
the sweeping/iteration technique.

(iii) An implicit scheme [7]:

m+1 m m+l m+ 1 m+1 m+ 1 m _ m m __ ,m
u =y up =3yt 4 3uy un+2+un_2 3ul 4+ 3ul —ul

At 2(4x)? 2(4x)’

2(A ){9[(u Yol = @)+ @)y, — ()]

+3(1 =)L)y (! —uy )+ @)y, —uy )]} (2.3)

This scheme is unconditionally stable according to linear analysis and has a trun-
cation error of order O((4t)?)+ O((4x)?*). This scheme is implemented using the
sweeping/iteration technique. Several values of § were employed and experimentally
we found that @ =% gave the best results.

(iv) Split step Fourier method (Tappert [8]). For convenience the spatial
period was normalized to [0, 2z, then Eq. (1.1) becomes

3
u,+6Eu2ux+E§uXXX=O, (2.4)
P p

where p is half the length of the interval of interest, and X' =(x + p) n/p.
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To implement this method for the MKdV equation (2.4), as the first step, one
first approximates,

u,+6§u2ux=0. (2.5)

Equation (2.5) can be approximated by using an implicit scheme such as

‘u'm+l=um

" " 12AX
+[8(u)y =8y = (), o+ ()51, (26)

where 7 is a solution of Eq. (2.5) and u is the solution of Eq. (2.4). For the second
step, one approximates

@Y7 =8 = ) + )]

753
U +—suyyxy=0 (2.7)
»’
by means of the discrete Fourier transform such as
u(X;, t+ At)=F~'(e™=P 4 F( X, 1))), (2.8)

where F denotes discrete Fourier transform and F~! its inverse. This scheme is
unconditionally stable according to linear analysis, and has a truncation error of
order O((4t)*) + O((4X)*).

(vi) Pseudospectral method by Fornberg and Whitham [9]. The pseudo-
spectral method for Eq. (24) is

6
w(X, t+ A1) — u(X, t — A1) + 217" At u¥(X, 1) F~'(kF(u))

_2iF-! {sin (”;]3‘3 At> F(u)} =0. (2.9)

The linear stability requirement for this scheme is 4¢/(4x)* < 3/2n2

3. CONCLUSIONS

According to our numerical experiments we have made the following conclusions
(see Tables I and II as examples):

(1) The proposed global scheme, based on IST, proved to be faster than all
of the methods we considered. It is worth noting that this proposed global scheme
behaves much better than the other utilized schemes either when better accuracy is
required or for large amplitudes. This result is similar to that for the NLS equation
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[5] and it suggests that eventually a similar conclusion will be drawn from the
implementation of the KdV schemes.

(2) The pseudospectral method becomes competitive with the IST global
scheme when both high accuracy and large amplitudes are involved.

(3) The implicit scheme behaves better than the proposed local scheme and
the pseudospectral method for low amplitudes, and it is much better than the split
step (Tappert) method.

(4) The proposed local scheme behaves better than the pseudospectral
method for small amplitudes for the 1-soliton case and becomes competitive with
the implicit scheme for large amplitudes.

(5) The split step Fourier method behaves much slower than all of the
methods we considered.

We note that since the proposed local scheme did not perform as well as its
global version, it will be under further investigation. All the numerical calculations
were inspected at every step by using the conserved quantities [u’dx, and
{ (u* — (u,)?) dx (Table I-11). The two conserved quantities are calculated by means
of Simpson’s rule. In the finite difference schemes we have discretized u, using a
central difference approximation. For the Fourier based schemes the discrete
Fourier transform was used to estimate u, in the computation of the conserved
quantity j (u* — (u,)?) dx. The proposed global scheme is the only utilized scheme
which has an infinite number of conserved quantities, and true soliton solutions. It
is worth mentioning that these IST schemes can also be used in combination with
other numerical schemes to study a wider class of physically important nonlinear
evolution equations. For example, they can be used to study perturbed forms of the
KdV, MKdV, and NLS equations [11].

ACKNOWLEDGMENTS

This research has been supported in part by the U.S. Army Research Office and by the Research
Foundation of the University of Georgia (by way of a Faculty Research Grant and a Michael Award),
and by AFSOR Grant 84.0005, NSF Grant DMS-8501325.

REFERENCES

1. N. J. ZaBuskY, Nonlinear Partial Differential Equations, A symposium on Methods of Solution,
edited by W. F. Ames (Academic Press, New York, 1967), p. 223; N. ZABUsKY, J. Comput. Phys. 43,
195 (1981).

2. A. Scorrt, F. CHu, aND D. MCLAUGHLIN, Proc. IEEE 61, No. 10, 1443 (1973).

3. T. R. TaHA AND M. J. ABLowiTZ, J. Comput. Phys. 55, 1982 (1984).

4. M. ABLowITZ AND H. SEGUR, Solitons and the inverse scattering transform, SIAM, Philadelphia,
(1981), p. 114.

5. T. R. TaHA AND M. J. ABLowiTz, J. Comput. Phys. 55, 203 (1984).



548 TAHA AND ABLOWITZ

6. T. R. Tana AND M. J. ABLowitz, J. Comput. Phys. 55, 231 (1984).

7. M. D. KruskaL, Princeton University, private communication, 1981.

8. F. TapPERT, “Numerical solutions of the Korteweg—de Vries equation and its generalizations by the
split-step Fourier method,” in Nonlinear Wave Motion, edited by A. C. Newell, Lecture in Appl.
Math. Vol. 15 (Amer. Math. Soc., Providence, RI, 1974), p. 215.

9. B. FORNBERG AND G. B. WHITHAM, Philos. Trans. R. Soc. London A 289, 373 (1978).

10. J. W. CooLEY, P. A. W. LEwis, aND P. D. WELCH, /EEE Trans. Educ. E-121, 27 (1969).

11. Y. KopaMa aAND M. J. ABLOWITZ, Stud. Appl. Math. 64, 255 (1981).

12. J. BoNa, V. DouGaLis, AND O. KARAKASHIAN, Comp. & Maths. with Appls. 12A, No. 7, 859 (1986).
13. J. M. SANZ-SERNA, J. Comput. Phys. 47, 199 (1982).

RECEIVED: February 13, 1987; RevisED: October 27, 1987

THiaB R. TAHA

Department of Computer Science
The University of Georgia,
Athens, Georgia 30602

MARK J. ABLOWITZ

Department of Mathematics and Computer Science,
Clarkson University,
Potsdam, New York 13676



